

RLC CIRCUITSAMPLIFIERSDIODESIT.0720.32





#### IT.0720.32 RLC CIRCUITS - AMPLIFIERS - DIODES

IT.0720.32

RLC CIRCUITS
- AMPLIFIERS
- DIODES

# INSTRUCTION MANUAL MANUALE D'ISTRUZIONE ( )

COMPANY WITH
QUALITY
MANAGEMENT
SYSTEM CERTIFIED
BY DNV
= ISO 9001:2015 =

# italtec Technical Training Systems srl

Viale Regina Giovanna 35 – 20129 MILANO

Sede operativa: Via M. Idiomi 1/17 - 20090 ASSAGO - MI-Tel +39 02 90 721 606 Fax +39 02 90 720 227 e-mail italtec@italtec.it http://www.italtec.it

### **COPYRIGHT NOTICE ©**

All right reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior our permission.

| IT.0720.32 | Rev.1/10-2015 | Made in Italy |
|------------|---------------|---------------|
|------------|---------------|---------------|



# IT.0720.32 RLC CIRCUITS - AMPLIFIERS - DIODES







# IT.0720.32 RLC CIRCUITS - AMPLIFIERS - DIODES



# Composition

- 1 Training kit
- 1 Oscilloscope
- 1 Generator
- 1 Power supply
- 1 Voltmeter
- 1 Ammeter
- · 1 Wattmeter

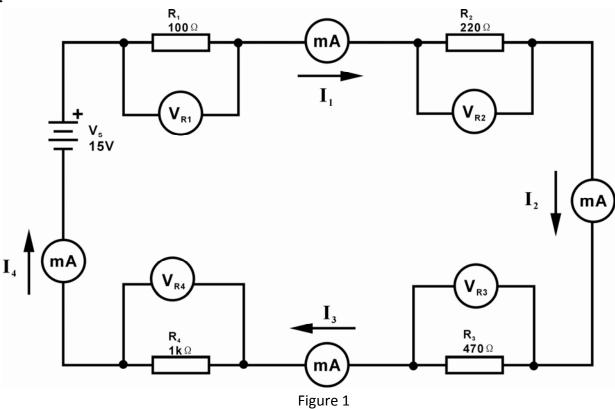
# Composizione

- 1 Kit d'addestramento
- 1 Oscilloscopio
- 1 Generatore
- 1 Alimentatore
- 1 Voltmetro
- 1 Amperometro
- 1 Wattmetro

# **Content**

| Experiment 1:  | Series resistors circuit                               | page 2~3   |
|----------------|--------------------------------------------------------|------------|
| Experiment 2:  | Parallel resistors circuit                             | page 4~5   |
| Experiment 3:  | Compound resistors circuit                             | page 6~7   |
| Experiment 4:  | Ohm's law I = F (V)                                    | page 8~9   |
| Experiment 5:  | Ohm's law I = F (R)                                    | page 10~11 |
| Experiment 6:  | Kirchhoff's Laws on voltage                            | page 12    |
| Experiment 7:  | Kirchhoff's Laws on current                            | page 13    |
| Experiment 8:  | Superposition theorem                                  | page 14~15 |
| Experiment 9:  | Thevenin's theorem                                     | page 16~17 |
| Experiment 10: | Norton's theorem                                       | page 18~19 |
| Experiment 11: | Voltage divider circuit                                | page 20~21 |
| Experiment 12: | Wheatstone bridge circuit                              | page 22~23 |
| Experiment 13: | R, C series circuit in AC circuit                      | page 24~26 |
| Experiment 14: | R, L series circuit in AC circuit                      | page 27~29 |
| Experiment 15: | R, L, C series circuit in AC circuit                   | page 30~32 |
| Experiment 16: | Characteristics of transistor                          | page 33~37 |
| Experiment 17: | Common base transistor amplifier circuit               | page 38~39 |
| Experiment 18: | Common emitter transistor amplifier circuit            | page 40~41 |
| Experiment 19: | Common collector transistor amplifier circuit          | page 42~43 |
| Experiment 20: | Constant DC voltage control circuit with transistor    | page 44~45 |
| Experiment 21: | Capacitors in series and parallel circuit              | page 46~48 |
| Experiment 22: | Inductors in series and parallel circuit               | page 49~51 |
| Experiment 23: | Characteristics of PTC resistor                        | page 52~53 |
| Experiment 24: | Characteristics of NTC resistor                        | page 54~55 |
| Experiment 25: | Characteristics of the transformer on load and no load | page 56    |
| Experiment 26: | Half-wave rectifier                                    | page 57~58 |
| Experiment 27: | Full-wave rectifier                                    | page 59~60 |
| Experiment 28: | The function of the relay                              | page 61~62 |
| Experiment 29: | Magnetic induction circuit transformer                 | page 63~64 |
| Experiment 30: | Characteristics of diode in DC circuit                 | page 65~66 |
| Experiment 31: | Characteristics of diode in AC circuit                 | page 67~68 |
| Experiment 32: | Rectifier and filter current circuit                   | page 69~71 |
| Experiment 33: | Characteristics of Zener diode                         | page 72~73 |

# **Experiment 1:** Series resistors circuit


# Object:

- To study the voltage and current in series resistors circuit.

# **Experimental device**

| Grid panel and tray with experimental components and leads | 1 set |
|------------------------------------------------------------|-------|
| 2. DC power supply                                         | 1 pc  |
| 3. Digital multimeter                                      | 2 pcs |

# Circuit



- 1. Set up the circuit as figure 1.
- 2. Supply a DC voltage  $V_S = 15V$  to the circuit.
- 3. Measure the current at different point and the voltage on every resistor as figure 1 shown and record the results in table 1.

| $R(\Omega)$                            | 100 | 220 | 470 | 1k |
|----------------------------------------|-----|-----|-----|----|
| I (mA)                                 |     |     |     |    |
| I (mA)*                                |     |     |     |    |
| V <sub>R</sub> (V) V <sub>R</sub> (V)* |     |     |     |    |
| V <sub>R</sub> (V)*                    |     |     |     |    |

Table 1

Note: \* values are calculated.

- 4. Take the measured values from table 1 to calculate the voltage and the current of each resistor and record the calculated values in table 1.
- 5. Describe the characteristics of voltage and current in series resistors circuit.

# **Experiment 2:** Parallel resistors circuit

# Object:

- To study the voltage and current in parallel resistors circuit.

# **Experimental device**

| Grid panel and tray with experimental components and leads | 1 set |
|------------------------------------------------------------|-------|
| 2. DC power supply                                         | 1 pc  |
| 3. Digital multimeter                                      | 2 pcs |

#### Circuit

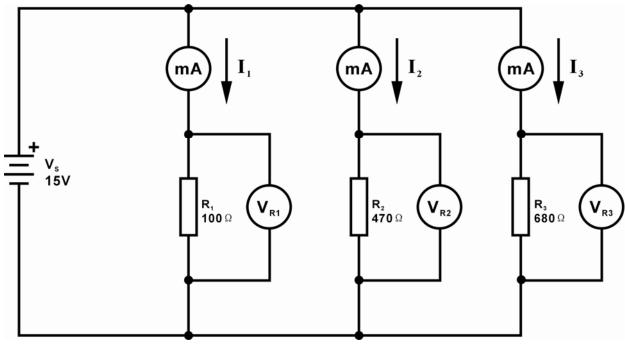



Figure 2

- 1. Set up the circuit as figure 2.
- 2. Supply a DC voltage  $V_S = 15V$  to the circuit.
- 3. Measure the voltage and the current at different point as figure 2 shown and record the results in table 2.

| R (Ω)               | 100 | 470 | 680 |
|---------------------|-----|-----|-----|
| I (mA)              |     |     |     |
| I (mA)*             |     |     |     |
| V <sub>R</sub> (V)  |     |     |     |
| V <sub>R</sub> (V)* |     |     |     |

Table 2

Note: \* values are calculated.

- 4. Take the measured values from table 2 to calculate the voltage and the current of each resistor and record the calculated values in table 2.
- 5. Describe the characteristics of voltage and current in parallel resistors circuit.

# **Experiment 3:** Compound resistors circuit

# Object:

- To study the voltage and current in compound resistors circuit.

# **Experimental device**

| Grid panel and tray with experimental components and leads | 1 set |
|------------------------------------------------------------|-------|
| 2. DC power supply                                         | 1 pc  |
| 3. Digital multimeter                                      | 2 pcs |

#### Circuit

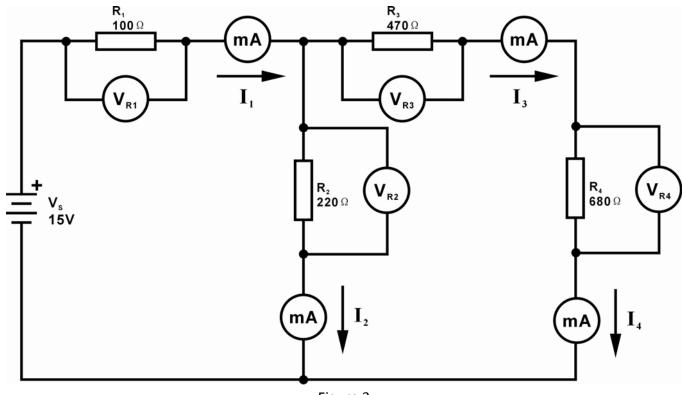



Figure 3

- 1. Set up the circuit as figure 3.
- 2. Supply a DC voltage  $V_S = 15V$  to the circuit.
- 3. Measure the current and the voltage at different point as figure 3 shown and record the results in table 3.

| R (Ω)               | 100 | 220 | 470 | 680 |
|---------------------|-----|-----|-----|-----|
| I (mA)              |     |     |     |     |
| I (mA)*             |     |     |     |     |
| V <sub>R</sub> (V)  |     |     |     |     |
| V <sub>R</sub> (V)* |     |     |     |     |

Table 3

# Note \* values are calculated.

- 4. Take the measured values from table 3 to calculate the voltage and the current of each resistor and record the calculated values in table 3.
- 5. Describe the characteristics of voltage and current in compound resistors circuit.

# Experiment 4: Ohm's law I = F (V)

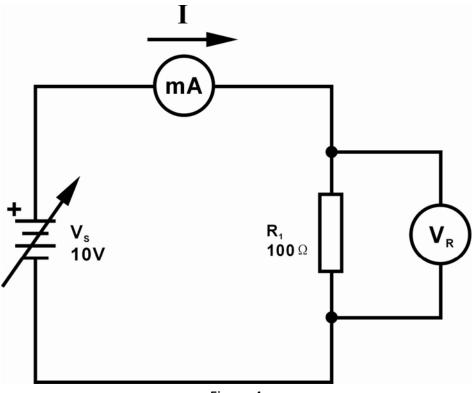
# Object:

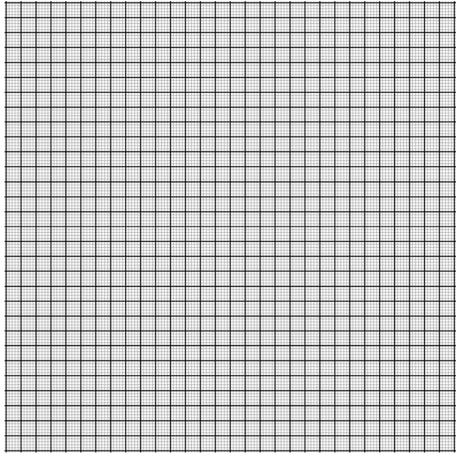
- To find the current that varies with the voltage on the constant resistance.

#### **Experimental device**

| Grid panel and tray with experimental components and leads | 1 set |
|------------------------------------------------------------|-------|
| 2. DC power supply                                         | 1 pc  |
| 3. Digital multimeter                                      | 2 pcs |

#### Circuit





Figure 4

- 1. Set up the circuit as figure 4 and let the  $R_1$  = 100 $\Omega$ .
- 2. Supply a DC voltage  $V_{\text{S}}$  to the circuit.
- 3. Adjust the DC voltage  $V_S$  to get  $V_R$  values as shown in table 4 and then measure and record the current values in table 4.
- 4. Change the resistor  $R_1$  as 470  $\Omega$  and  $1k\Omega$ , respectively repeat as section 2 and 3, record the values in table 4.

|                       | V <sub>R</sub> (V) | 1 | 2 | 4 | 6 | 8 | 10 |
|-----------------------|--------------------|---|---|---|---|---|----|
| $R_1 = 100 \Omega$    | I (mA)             |   |   |   |   |   |    |
| R <sub>2</sub> =470 Ω | I (mA)             |   |   |   |   |   |    |
| R <sub>3</sub> =1k Ω  | I (mA)             |   |   |   |   |   |    |

Table 4

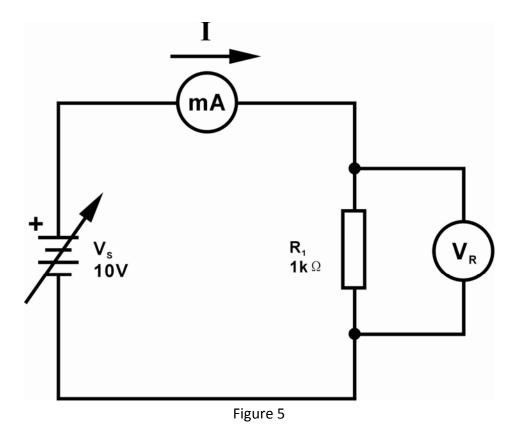
5. Take the current values from the table 4 to draw a graph and determine the relationship  $I = f(V_R)$  on the constant resistance.



Graph 4

6. Describe the results from table 4 and graph 4.

# Experiment 5: Ohm's law I = F(R)

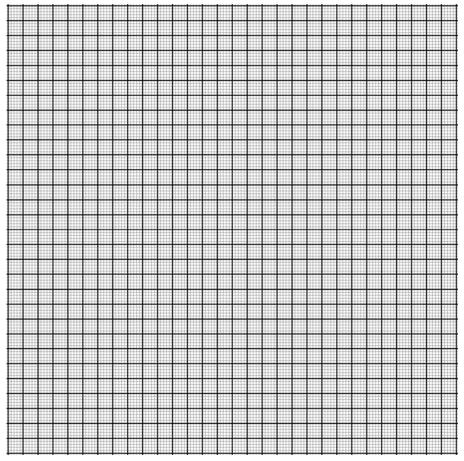

# Objective

- To find the current that varies with the resistance on the constant voltage.

#### **Experimental device**

| 1. Grid panel and tray with experimental components and leads | 1 set |
|---------------------------------------------------------------|-------|
| 2. DC power supply                                            | 1 pc  |
| 3. Digital multimeter                                         | 2 pcs |

#### Circuit




- 1. Set up the circuit as figure 5 and let the  $R_1$  = 100 $\Omega$ .
- 2. Supply a DC voltage  $V_S$  to the circuit.
- 3. Adjust the DC voltage  $V_S$  to get the  $V_R$  is 4 V, measure and record the current values in table 5.
- 4. Change the value of the resistor R<sub>1</sub> and repeat the experiment as section 3 and record the values in table 5.
- 5. Adjust the voltage  $V_R$  to 8 V and 12 V, do the experiment as section 4 and record the values in table 5.

|                     | R( $\Omega$ ) | 100 | 200 | 470 | 680 | 1k | 2.2k |
|---------------------|---------------|-----|-----|-----|-----|----|------|
| V <sub>R</sub> =4V  | I (mA)        |     |     |     |     |    |      |
| V <sub>R</sub> =8V  | I (mA)        |     |     |     |     |    |      |
| V <sub>R</sub> =12V | I (mA)        |     |     |     |     |    |      |

Table 5

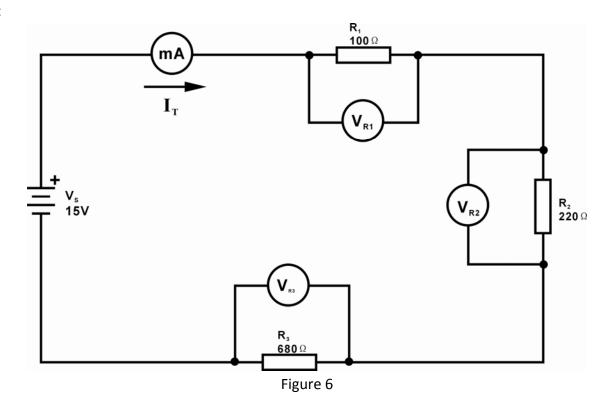
6. Take the current values from table 5 to draw a graph and determine the relationship I = f(R) on the constant voltage.



Graph 5

7. Describe the results from table 5 and graph 5.

# **Experiment 6:** Kirchhoff's Laws on voltage


#### **Objective:**

- To find the voltage of the circuit by Kirchhoff's laws.

#### **Experimental device**

Grid panel and tray with experimental components and leads
 DC power supply
 Digital multimeter
 pc

#### Circuit



#### **Experimental procedure**

- 1. Set up the circuit as figure 6.
- 2. Supply a DC voltage  $V_S = 15V$  to the circuit.
- 3. Measure the voltage on the resistors  $R_1$ ,  $R_2$  and  $R_3$  as figure 6 shown and record the values in table 6.
- 4. Measure the total current of the circuit  $I_T$  as figure 6 shown and record the values in table 6.
- 5. Calculate the voltage  $V_{R1}^*$ ,  $V_{R2}^*$  and  $V_{R3}^*$  by the total current value  $I_T$  and record the voltage values in table 6.

| $R_1$ =100 $\Omega$ | I <sub>T</sub> =A | V <sub>R1</sub> =V | V <sub>R1</sub> *=V |
|---------------------|-------------------|--------------------|---------------------|
| $R_2$ =220 $\Omega$ | I <sub>T</sub> =A | V <sub>R2</sub> =V | V <sub>R2</sub> *=V |
| $R_3$ =680 $\Omega$ | I <sub>T</sub> =A | V <sub>R3</sub> =V | V <sub>R3</sub> *=V |

Table 6

Note \* values are calculated.

6. Compare the values from the experiment with calculated values by Kirchhoff's laws.

# **Experiment 7:** Kirchhoff's Laws on current

#### **Objective:**

- To find the current of the circuit by Kirchhoff's laws.

#### **Experimental device**

1. Grid panel and tray with experimental components and leads1 set2. DC power supply1 pc

3. Digital multimeter 2 pcs

#### Circuit

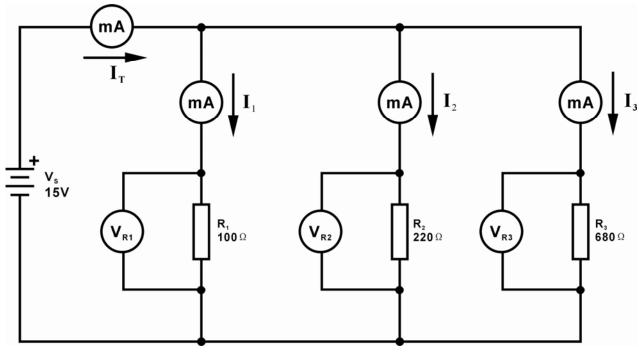



Figure 7

#### **Experimental procedure**

- 1. Set up the circuit as figure 7.
- 2. Supply a DC voltage  $V_S = 15V$  to the circuit.
- 3. Measure the voltage on the  $V_{R1}$ ,  $V_{R2}$  and  $V_{R3}$  as figure 7 shown and record the values in table 7.
- 4. Measure the current  $I_1$ ,  $I_2$  and  $I_3$  as figure 7 shown and record the values in table 7.
- 5. Calculate the current  $I_1^*$ ,  $I_2^*$  and  $I_3^*$  and record the values in table 7.

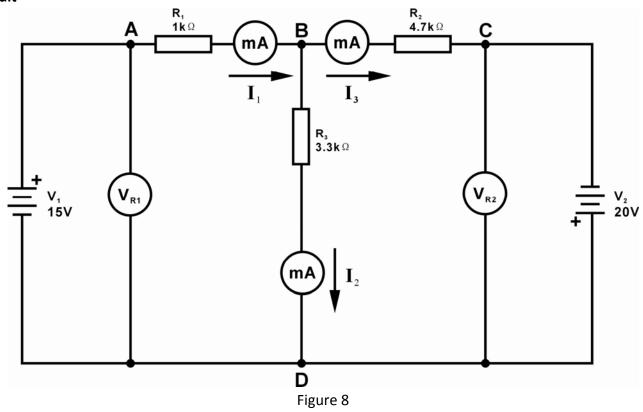
| $R_1$ =100 $\Omega$ | V <sub>R1</sub> =V | I <sub>1</sub> =A | I <sub>1</sub> *=A |
|---------------------|--------------------|-------------------|--------------------|
| $R_2$ =220 $\Omega$ | V <sub>R2</sub> =V | I <sub>2</sub> =A | I <sub>2</sub> *=A |
| $R_3$ =680 $\Omega$ | V <sub>R3</sub> =V | I <sub>3</sub> =A | I <sub>3</sub> *=A |

Table 7

Note \* values are calculated.

6. Compare the values from the experiment with calculated values by Kirchhoff's laws.

# **Experiment 8:** Superposition theorem


#### Objective:

- To find the current of the circuit by superposition theorem.

#### **Experimental device**

| Grid panel and tray with experimental components and leads | 1 set |
|------------------------------------------------------------|-------|
| 2. DC power supply                                         | 2 pcs |
| 3. Digital multimeter                                      | 2 pcs |

#### Circuit



#### **Experimental procedure**

- 1. Set up the circuit as figure 8.
- 2. Supply a DC voltage  $V_1 = 15V$  and  $V_2 = 20V$  to the circuit.
- 3. Measure the current as figure 8 shown. Determine the direction of the current.

|              | I₁ (mA) | I <sub>2</sub> (mA) | I₃ (mA) |
|--------------|---------|---------------------|---------|
| Experimental |         |                     |         |
| Calculate    |         |                     |         |
| Direction    |         |                     |         |

Table 8.1

Note: Direction of current in a circuit: to determine the current flows from the beginning to the end point. As the current flows from point A to point B, write as  $A \rightarrow B$ .

- 4. Calculate the current in each resistor and record the values in table 8.1.
- 5. Disconnect the power supply voltage V<sub>2</sub> and short circuit at the point of C and D.

- 6. Measure the current in each resistor and determine the direction of current. Record the values in table 8.2.
- 7. Disconnect the short circuit at point of C and D and supply a DC voltage to  $V_2$  again. And then disconnect  $V_1$  from the circuit and short circuit at point A and D.
- 8. Measure the current in each resistor and determine the direction of current. Record the values in table 8.2.

|                  |              | I <sub>1</sub> (mA) | I <sub>2</sub> (mA) | I₃(mA) |
|------------------|--------------|---------------------|---------------------|--------|
| Disconnect<br>V2 | Experimental |                     |                     |        |
|                  | Calculate    |                     |                     |        |
|                  | Direction    |                     |                     |        |
| Disconnect<br>V1 | Experimental |                     |                     |        |
|                  | Calculate    |                     |                     |        |
|                  | Direction    |                     |                     |        |

Table 8.2

- 9. Calculate the current in each resistor and record the values in table8.2.
- 10. Describe the results from table 8.1 and table 8.2.

# **Experiment 9:** Thevenin's theorem

#### Objective:

- To calculate the voltage and the resistance in the circuit by Thevenin's theorem.

#### **Experimental device**

| Grid panel and tray with experimental components and leads | 1 set |
|------------------------------------------------------------|-------|
| 2. DC power supply                                         | 1 pc  |
| 3. Digital multimeter                                      | 1 pcs |

#### Circuit

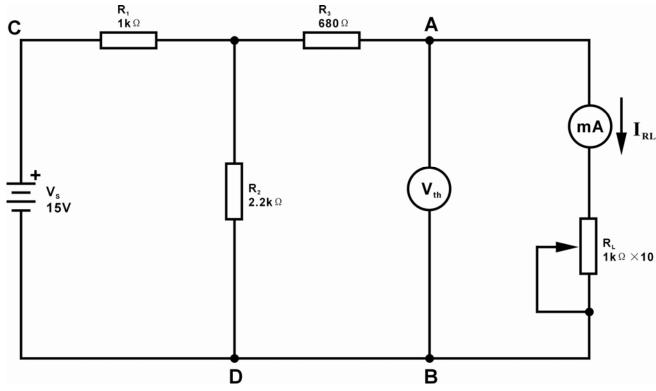



Figure 9.1

#### **Experimental procedure**

- 1. Set up the circuit as figure 9.1.
- 2. Supply a DC voltage  $V_S = 15V$  to the circuit.
- 3. Measure the current in the resistor  $R_L$  with different values shown in table 9.1 and record the results in table 9.1.

| $R_L(k\Omega)$        | 1 | 2 | 3 |
|-----------------------|---|---|---|
| I <sub>RL</sub> (mA)  |   |   |   |
| *I <sub>RL</sub> (mA) |   |   |   |

Table 9.1

Note \* values are calculated.

- 4. Calculate the current in the resistor R<sub>L</sub> with different values shown in table 9.1 and record the values in table 9.1.
- 5. Disconnect the resistor  $R_L$  from point A and B and measure the voltage between point A and B as figure 9.1.

 $V_{AB}$  =..... V (Thevenin's voltage:  $V_{th}$ ).

6. Disconnect  $V_S$  from the circuit and short-circuit at the point C and D. Measure the resistance at point A and B. (keep  $R_L$  away from the circuit)

 $R_{AB} = \dots k\Omega$  (Thevenin's resistance:  $R_{th}$ )

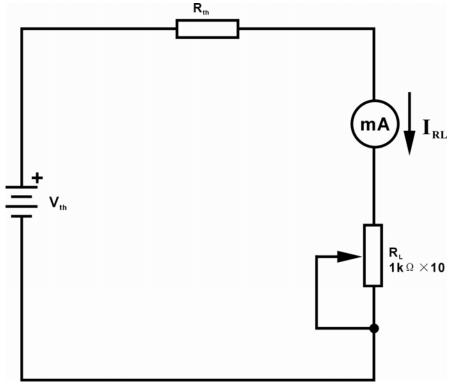



Figure 9.2

- 7. Set up the circuit as figure 9.2 by using the  $V_{th}$  and  $R_{th}$  of the experiment in section 5 and 6.
- 8. Measure the current in the resistor  $R_L$  with different values shown in table 9.2 and record the results in table 9.2.

| $R_L(k\Omega)$        | 1 | 2 | 3 |
|-----------------------|---|---|---|
| I <sub>RL</sub> (mA)  |   |   |   |
| *I <sub>RL</sub> (mA) |   |   |   |

Table 9.2

Note \* values are calculated.

- 9. Calculate the current in the resistor  $R_L$  with different values shown in table 9.2 and record the values in table 9.2.
- 10. Describe the results from table 9.1 and table 9.2.

# **Experiment 10:** Norton's theorem

#### **Objective:**

- To calculate the current in the circuit by Norton's theorem

# **Experimental device**

| 1. Grid panel and tray with experimental components and leads | 1 set |
|---------------------------------------------------------------|-------|
| 2. DC power supply (CV & CC)                                  | 1 pc  |
| 3. Digital multimeter                                         | 1 pc  |

#### Circuit

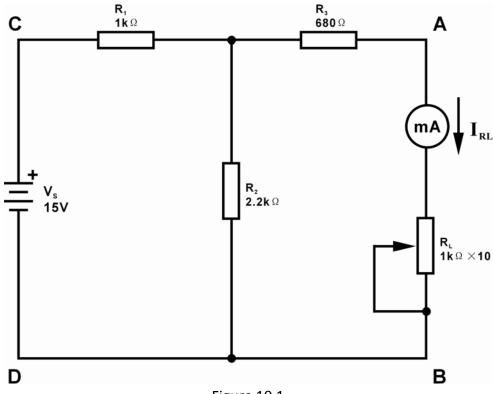



Figure 10.1

#### **Experimental procedure**

- 1. Set up the circuit as figure 10.1.
- 2. Supply a DC voltage  $V_S = 15V$  to the circuit.
- 3. Measure the current in the resistor  $R_L$  with different values shown in table 10.1 and record values in table 10.1.

| $R_L(k\Omega)$        | 1 | 2 | 3 |
|-----------------------|---|---|---|
| I <sub>RL</sub> (mA)  |   |   |   |
| *I <sub>RL</sub> (mA) |   |   |   |

Table 10.1

Note \* values are calculated.

- 4. Calculate the current in the resistor  $R_L$  with different values shown in table 10.1 and record the results in table10.1.
- 5. Disconnect the resistor  $R_L$  from point A and B and take an ammeter to replace the resistor  $R_L$ . Measure the Norton's current  $(I_N)$

$$I_N = \dots mA$$
 (Norton's current:  $I_N$ ).



italtec Technical Training Systems S.r.L. 20129 – MILANO – ITALIA – Viale Regina Giovanna, 35 Tel. +39 02 90 721 606 www.italtec.it www.italtec.it